- 1.Hanahan D., Weinberg R.A. The Hallmarks of Cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9. [DOI] [PubMed] [Google Scholar]
- 2.Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. [DOI] [PubMed] [Google Scholar]
- 3.Duggan C., Dvaladze A., Rositch A.F., Ginsburg O., Yip C., Horton S., Rodriguez R.C., Eniu A., Mutebi M., Bourque J., et al. The Breast Health Global Initiative 2018 Global Summit on Improving Breast Healthcare Through Resource-Stratified Phased Implementation: Methods and overview. Cancer. 2020;126:2339–2352. doi: 10.1002/cncr.32891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.World Health Organization . Global Health Estimates 2016: Disease Burden by Cause, Age, Sex, by Country and by Region, 2000–2016. World Health Organization; Geneva, Switzerland: 2018. [(accessed on 9 July 2021)]. Available online: https://www.who.int/healthinfo/global_burden_disease/esti-mates/en/index1.html. [Google Scholar]
- 5.Ferlay J., Ervik M., Lam F., Colombet M., Mery L., Piñeros M., Znaor A., Soerjomataram I., Bray F. Global Cancer Obser-Vatory: Cancer Today. International Agency for Research on Cancer; Lyon, France: 2020. [(accessed on 9 July 2021)]. Available online: https://gco.iarc.fr/today. [Google Scholar]
- 6.DeSantis C.E., Fedewa S.A., Sauer A.G., Kramer J.L., Smith R.A., Jemal A. Breast cancer statistics, 2015: Convergence of incidence rates between black and white women. CA A Cancer J. Clin. 2015;66:31–42. doi: 10.3322/caac.21320. [DOI] [PubMed] [Google Scholar]
- 7.Sharma R. Global, regional, national burden of breast cancer in 185 countries: Evidence from GLOBOCAN 2018. Breast Cancer Res. Treat. 2021;187:557–567. doi: 10.1007/s10549-020-06083-6. [DOI] [PubMed] [Google Scholar]
- 8.Ginsburg O., Bray F., Coleman M., Vanderpuye V., Eniu A., Kotha S.R., Sarker M., Huong T.T., Allemani C., Dvaladze A., et al. The global burden of women’s cancers: A grand challenge in global health. Lancet. 2016;389:847–860. doi: 10.1016/S0140-6736(16)31392-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Vostakolaei F.A., Karim-Kos H.E., Janssen-Heijnen M.L.G., Visser O., Verbeek A.L.M., Kiemeney L. The validity of the mortality to incidence ratio as a proxy for site-specific cancer survival. Eur. J. Public Health. 2010;21:573–577. doi: 10.1093/eurpub/ckq120. [DOI] [PubMed] [Google Scholar]
- 10.Sankaranarayanan R., Swaminathan R., Brenner H., Chen K., Chia K.S., Chen J.-G., Law S.C., Ahn Y.-O., Xiang Y.B., Yeole B.B., et al. Cancer survival in Africa, Asia, and Central America: A population-based study. Lancet Oncol. 2010;11:165–173. doi: 10.1016/S1470-2045(09)70335-3. [DOI] [PubMed] [Google Scholar]
- 11.Sharma R. Breast cancer incidence, mortality and mortality-to-incidence ratio (MIR) are associated with human development, 1990–2016: Evidence from Global Burden of Disease Study 2016. Breast Cancer. 2019;26:428–445. doi: 10.1007/s12282-018-00941-4. [DOI] [PubMed] [Google Scholar]
- 12.Ferlay J., Laversanne M., Ervik M., Lam F., Colombet M., Mery L., Piñeros M., Znaor A., Soerjomataram I., Bray F. International Agency for Research on Cancer; Lyon, France: 2020. [(accessed on 9 July 2021)]. Global Cancer Observatory: Cancer Tomorrow. Available online: https://gco.iarc.fr/tomorrow. [Google Scholar]
- 13.Porter P. Westernizing Women’s Risks? Breast Cancer in Lower-Income Countries. N. Engl. J. Med. 2008;358:213–216. doi: 10.1056/NEJMp0708307. [DOI] [PubMed] [Google Scholar]
- 14.Key T.J., Appleby P.N., Reeves G.K., Travis R.C., Alberg A.J., Barricarte A., Berrino F., Krogh V., Sieri S., Brinton L.A., et al. Sex hormones and risk of breast cancer in premenopausal women: A collaborative reanalysis of individual participant data from seven prospective studies. Lancet Oncol. 2013;14:1009–1019. doi: 10.1016/s1470-2045(13)70301-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Folkerd E., Dowsett M. Sex hormones and breast cancer risk and prognosis. Breast. 2013;22:S38–S43. doi: 10.1016/j.breast.2013.07.007. [DOI] [PubMed] [Google Scholar]
- 16.Zhang X., Tworoger S., Eliassen A.H., Hankinson S.E. Postmenopausal plasma sex hormone levels and breast cancer risk over 20 years of follow-up. Breast Cancer Res. Treat. 2013;137:883–892. doi: 10.1007/s10549-012-2391-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Key T., Appleby P., Barnes I., Reeves G. The Endogenous Hormones and Breast Cancer Collaborative Group Endogenous Sex Hormones and Breast Cancer in Postmenopausal Women: Reanalysis of Nine Prospective Studies. J. Natl. Cancer Inst. 2002;94:606–616. doi: 10.1093/jnci/94.8.606. [DOI] [PubMed] [Google Scholar]
- 18.Giordano S.H. Breast cancer in men. N. Engl. J. Med. 2018;378:2311–2320. doi: 10.1056/NEJMra1707939. [DOI] [PubMed] [Google Scholar]
- 19.Benz C.C. Impact of aging on the biology of breast cancer. Crit. Rev. Oncol. 2008;66:65–74. doi: 10.1016/j.critrevonc.2007.09.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Siegel R., Ma J., Zou Z., Jemal A. Cancer statistics, 2014. CA Cancer J. Clin. 2014;64:9–29. doi: 10.3322/caac.21208. [DOI] [PubMed] [Google Scholar]
- 21.McGuire A., Brown J.A.L., Malone C., McLaughlin R., Kerin M.J. Effects of Age on the Detection and Management of Breast Cancer. Cancers. 2015;7:908–929. doi: 10.3390/cancers7020815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Stat Bite: Lifetime Probability among Females of Dying of Cancer. JNCI J. Natl. Cancer Inst. 2004;96:1311–1321. doi: 10.1093/jnci/96.11.818. [DOI] [PubMed] [Google Scholar]
- 23.Collaborative Group on Hormonal Factors in Breast Cancer Familial breast cancer: Collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet. 2001;358:1389–1399. doi: 10.1016/S0140-6736(01)06524-2. [DOI] [PubMed] [Google Scholar]
- 24.Shiyanbola O.O., Arao R.F., Miglioretti D.L., Sprague B.L., Hampton J.M., Stout N.K., Kerlikowske K., Braithwaite D., Buist D.S., Egan K.M., et al. Emerging Trends in Family History of Breast Cancer and Associated Risk. Cancer Epidemiol. Biomark. Prev. 2017;26:1753–1760. doi: 10.1158/1055-9965.EPI-17-0531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Baglia M.L., Tang M.-T.C., Malone K.E., Porter P., Li C.I. Family History and Risk of Second Primary Breast Cancer after In Situ Breast Carcinoma. Cancer Epidemiol. Biomark. Prev. 2018;27:315–320. doi: 10.1158/1055-9965.EPI-17-0837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Brewer H.R., Jones M.E., Schoemaker M.J., Ashworth A., Swerdlow A.J. Family history and risk of breast cancer: An analysis accounting for family structure. Breast Cancer Res. Treat. 2017;165:193–200. doi: 10.1007/s10549-017-4325-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Wu H.C., Do C., Andrulis I.L., John E.M., Daly M.B., Buys S.S., Chung W.K., Knight J.A., Bradbury A.R., Keegan T.H.M., et al. Breast cancer family history and allele-specific DNA methylation in the legacy girls study. Epigenetics. 2018;13:240–250. doi: 10.1080/15592294.2018.1435243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Elik A., Acar M., Erkul C.M., Gunduz E., Gunduz M. Relationship of Breast Cancer with Ovarian Cancer. Concise Rev. Mol. Pathol. Breast Cancer. 2015:87–202. doi: 10.5772/59682. [DOI] [Google Scholar]
- 29.Shiovitz S., Korde L.A. Genetics of breast cancer: A topic in evolution. Ann. Oncol. 2015;26:1291–1299. doi: 10.1093/annonc/mdv022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Shahbandi A., Nguyen H.D., Jackson J.G. TP53 Mutations and Outcomes in Breast Cancer: Reading beyond the Headlines. Trends Cancer. 2020;6:98–110. doi: 10.1016/j.trecan.2020.01.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Corso G., Veronesi P., Sacchini V., Galimberti V. Prognosis and outcome in CDH1-mutant lobular breast cancer. Eur. J. Cancer Prev. 2018;27:237–238. doi: 10.1097/CEJ.0000000000000405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Corso G., Intra M., Trentin C., Veronesi P., Galimberti V. CDH1 germline mutations and hereditary lobular breast cancer. Fam. Cancer. 2016;15:215–219. doi: 10.1007/s10689-016-9869-5. [DOI] [PubMed] [Google Scholar]
- 33.Kechagioglou P., Papi R.M., Provatopoulou X., Kalogera E., Papadimitriou E., Grigoropoulos P., Nonni A., Zografos G., Kyriakidis D.A., Gounaris A. Tumor suppressor PTEN in breast cancer: Heterozygosity, mutations and protein expression. Anticancer. Res. 2014;34:1387–1400. [PubMed] [Google Scholar]
- 34.Chen J., Lindblom A. Germline mutation screening of the STK11/LKB1 gene in familial breast cancer with LOH on 19p. Clin. Genet. 2001;57:394–397. doi: 10.1034/j.1399-0004.2000.570511.x. [DOI] [PubMed] [Google Scholar]
- 35.Renwick A., The Breast Cancer Susceptibility Collaboration (UK) Thompson D., Seal S., Kelly P., Chagtai T., Ahmed M., North B., Jayatilake H., Barfoot R., et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat. Genet. 2006;38:873–875. doi: 10.1038/ng1837. [DOI] [PubMed] [Google Scholar]
- 36.Rahman N., The Breast Cancer Susceptibility Collaboration (UK) Seal S., Thompson D., Kelly P., Renwick A., Elliott A., Reid S., Spanova K., Barfoot R., et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat. Genet. 2006;39:165–167. doi: 10.1038/ng1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Seal S., The Breast Cancer Susceptibility Collaboration (UK) Thompson D., Renwick A., Elliott A., Kelly P., Barfoot R., Chagtai T., Jayatilake H., Ahmed M., et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat. Genet. 2006;38:1239–1241. doi: 10.1038/ng1902. [DOI] [PubMed] [Google Scholar]
- 38.Meijers-Heijboer H., Ouweland A.V.D., Klijn J., Wasielewski M., De Snoo A., Oldenburg R., Hollestelle A., Houben M., Crepin E., Van Veghel-Plandsoen M., et al. Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat. Genet. 2002;31:55–59. doi: 10.1038/ng879. [DOI] [PubMed] [Google Scholar]
- 39.Park D.J., Lesueur F., Nguyen-Dumont T., Pertesi M., Odefre F., Hammet F., Neuhausen S.L., John E.M., Andrulis I.L., Terry M.B., et al. Rare mutations in XRCC2 increase the risk of breast cancer. Am. J. Hum. Genet. 2012;90:734–739. doi: 10.1016/j.ajhg.2012.02.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Thompson D. Cancer Incidence in BRCA1 Mutation Carriers. J. Natl. Cancer Inst. 2002;94:1358–1365. doi: 10.1093/jnci/94.18.1358. [DOI] [PubMed] [Google Scholar]
- 41.Hoskins L.M., Roy K., Peters J.A., Loud J.T., Greene M.H. Disclosure of positive BRCA1/2-mutation status in young couples: The journey from uncertainty to bonding through partner support. Fam. Syst. Health. 2008;26:296–316. doi: 10.1037/a0012914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Børresen-Dale A.-L. TP53and breast cancer. Hum. Mutat. 2003;21:292–300. doi: 10.1002/humu.10174. [DOI] [PubMed] [Google Scholar]
- 43.Heitzer E., Lax S., Lafer I., Müller S.M., Pristauz G., Ulz P., Jahn S., Högenauer C., Petru E., Speicher M.R., et al. Multiplex genetic cancer testing identifies pathogenic mutations in TP53 and CDH1in a patient with bilateral breast and endometrial adenocarcinoma. BMC Med. Genet. 2013;14:129. doi: 10.1186/1471-2350-14-129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Fusco N., Sajjadi E., Venetis K., Gaudioso G., Lopez G., Corti C., Rocco E.G., Criscitiello C., Malapelle U., Invernizzi M. PTEN Alterations and Their Role in Cancer Management: Are We Making Headway on Precision Medicine? Genes. 2020;11:719. doi: 10.3390/genes11070719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Angeli D., Salvi S., Tedaldi G. Genetic Predisposition to Breast and Ovarian Cancers: How Many and Which Genes to Test? Int. J. Mol. Sci. 2020;21:1128. doi: 10.3390/ijms21031128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Foretová L., Navrátilová M., Svoboda M., Vašíčková P., Hrabincová E.S., Házová J., Kleiblová P., Kleibl Z., Macháčková E., Palácová M., et al. Recommendations for Preventive Care for Women with Rare Genetic Cause of Breast and Ovarian Cancer. Klin. Onkol. 2019;32:6–13. doi: 10.14735/amko2019S6. [DOI] [PubMed] [Google Scholar]
- 47.Hu Z.-Y., Liu L., Xie N., Lu J., Liu Z., Tang Y., Wang Y., Yang J., Ouyang Q. Germline PALB2 Mutations in Cancers and Its Distinction from Somatic PALB2 Mutations in Breast Cancers. Front. Genet. 2020;11:829. doi: 10.3389/fgene.2020.00829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Cantor S.B., Guillemette S. Hereditary breast cancer and the BRCA1-associated FANCJ/BACH1/BRIP1. Future Oncol. 2011;7:253–261. doi: 10.2217/fon.10.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Rainville I., Hatcher S., Rosenthal E., Larson K., Bernhisel R., Meek S., Gorringe H., Mundt E., Manley S. High risk of breast cancer in women with biallelic pathogenic variants in CHEK2. Breast Cancer Res. Treat. 2020;180:503–509. doi: 10.1007/s10549-020-05543-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Kluźniak W., The Polish Hereditary Breast Cancer Consortium. Wokołorczyk D., Rusak B., Huzarski T., Gronwald J., Stempa K., Rudnicka H., Kashyap A., Dębniak T., et al. Inherited variants in XRCC2 and the risk of breast cancer. Breast Cancer Res. Treat. 2019;178:657–663. doi: 10.1007/s10549-019-05415-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Hill D.A., Prossnitz E.R., Royce M., Nibbe A. Temporal trends in breast cancer survival by race and ethnicity: A population-based cohort study. PLoS ONE. 2019;14:e0224064. doi: 10.1371/journal.pone.0224064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Yedjou C.G., Sims J.N., Miele L., Noubissi F., Lowe L., Fonseca D.D., Alo R.A., Payton M., Tchounwou P.B. Health and Racial Disparity in Breast Cancer. Adv. Exp. Med. Biol. 2019;1152:31–49. doi: 10.1007/978-3-030-20301-6_3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.ACS . American Cancer Society (2016) Breast Cancer Facts & Figures, 2015–2016. American Cancer Society; Atlanta, GA, USA: 2016. [Google Scholar]
- 54.Bernstein L. Epidemiology of Endocrine-Related Risk Factors for Breast Cancer. J. Mammary Gland. Biol. Neoplasia. 2002;7:3–15. doi: 10.1023/A:1015714305420. [DOI] [PubMed] [Google Scholar]
- 55.Albrektsen G., Heuch I., Hansen S., Kvåle G. Breast cancer risk by age at birth, time since birth and time intervals between births: Exploring interaction effects. Br. J. Cancer. 2004;92:167–175. doi: 10.1038/sj.bjc.6602302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Husby A., Wohlfahrt J., Øyen N., Melbye M. Pregnancy duration and breast cancer risk. Nat. Commun. 2018;9:4255. doi: 10.1038/s41467-018-06748-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Innes K.E., Byers T.E. Preeclampsia and Breast Cancer Risk. Epidemiology. 1999;10:722–732. doi: 10.1097/00001648-199911000-00013. [DOI] [PubMed] [Google Scholar]
- 58.Reeves G.K., Kan S.-W., Key T., Tjønneland A., Olsen A., Overvad K., Peeters P.H., Clavel-Chapelon F., Paoletti X., Berrino F., et al. Breast cancer risk in relation to abortion: Results from the EPIC study. Int. J. Cancer. 2006;119:1741–1745. doi: 10.1002/ijc.22001. [DOI] [PubMed] [Google Scholar]
- 59.Ursin G., Bernstein L., Lord S.J., Karim R., Deapen D., Press M.F., Daling J.R., Norman S.A., Liff J.M., Marchbanks P.A., et al. Reproductive factors and subtypes of breast cancer defined by hormone receptor and histology. Br. J. Cancer. 2005;93:364–371. doi: 10.1038/sj.bjc.6602712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Orgéas C.C., Hall P., Rosenberg L.U., Czene K. The influence of menstrual risk factors on tumor characteristics and survival in postmenopausal breast cancer. Breast Cancer Res. 2008;10:R107. doi: 10.1186/bcr2212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Titus-Ernstoff L., Longnecker M., Newcomb P.A., Dain B., Greenberg E.R., Mittendorf R., Stampfer M., Willett W. Menstrual factors in relation to breast cancer risk. Cancer Epidemiol. Biomark. Prev. 1998;7:783–789. [PubMed] [Google Scholar]
- 62.Checka C.M., Chun J.E., Schnabel F.R., Lee J., Toth H. The Relationship of Mammographic Density and Age: Implications for Breast Cancer Screening. Am. J. Roentgenol. 2012;198:W292–W295. doi: 10.2214/AJR.10.6049. [DOI] [PubMed] [Google Scholar]
- 63.Kim E.Y., Chang Y., Ahn J., Yun J., Park Y.L., Park C.H., Shin H., Ryu S. Mammographic breast density, its changes, and breast cancer risk in premenopausal and postmenopausal women. Cancer. 2020;126:4687–4696. doi: 10.1002/cncr.33138. [DOI] [PubMed] [Google Scholar]
- 64.Duffy S.W., Morrish O.W., Allgood P.C., Black R., Gillan M.G., Willsher P., Cooke J., Duncan K.A., Michell M.J., Dobson H.M., et al. Mammographic density and breast cancer risk in breast screening assessment cases and women with a family history of breast cancer. Eur. J. Cancer. 2017;88:48–56. doi: 10.1016/j.ejca.2017.10.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Schacht D.V., Yamaguchi K., Lai J., Kulkarni K., Sennett C.A., Abe H. Importance of a Personal History of Breast Cancer as a Risk Factor for the Development of Subsequent Breast Cancer: Results from Screening Breast MRI. Am. J. Roentgenol. 2014;202:289–292. doi: 10.2214/AJR.13.11553. [DOI] [PubMed] [Google Scholar]
- 66.Hartmann L.C., Sellers T.A., Frost M.H., Lingle W.L., Degnim A.C., Ghosh K., Vierkant R., Maloney S.D., Pankratz V.S., Hillman D.W., et al. Benign Breast Disease and the Risk of Breast Cancer. N. Engl. J. Med. 2005;353:229–237. doi: 10.1056/NEJMoa044383. [DOI] [PubMed] [Google Scholar]
- 67.Dyrstad S.W., Yan Y., Fowler A.M., Colditz G.A. Breast cancer risk associated with benign breast disease: Systematic review and meta-analysis. Breast Cancer Res. Treat. 2015;149:569–575. doi: 10.1007/s10549-014-3254-6. [DOI] [PubMed] [Google Scholar]
- 68.Wang J., Costantino J.P., Tan-Chiu E., Wickerham D.L., Paik S., Wolmark N. Lower-Category Benign Breast Disease and the Risk of Invasive Breast Cancer. J. Natl. Cancer Inst. 2004;96:616–620. doi: 10.1093/jnci/djhs105. [DOI] [PubMed] [Google Scholar]
- 69.Ng J., Shuryak I. Minimizing second cancer risk following radiotherapy: Current perspectives. Cancer Manag. Res. 2014;7:1–11. doi: 10.2147/CMAR.S47220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Zhang Q., Liu J., Ao N., Yu H., Peng Y., Ou L., Zhang S. Secondary cancer risk after radiation therapy for breast cancer with different radiotherapy techniques. Sci. Rep. 2020;10:1220. doi: 10.1038/s41598-020-58134-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Ng A.K., Travis L.B. Radiation therapy and breast cancer risk. J. Natl. Compr. Cancer Netw. 2009;7:1121–1128. doi: 10.6004/jnccn.2009.0073. [DOI] [PubMed] [Google Scholar]
- 72.Bartelink H., Horiot J.-C., Poortmans P., Struikmans H., Bogaert W.V.D., Barillot I., Fourquet A., Borger J., Jager J., Hoogenraad W., et al. Recurrence Rates after Treatment of Breast Cancer with Standard Radiotherapy with or without Additional Radiation. N. Engl. J. Med. 2001;345:1378–1387. doi: 10.1056/NEJMoa010874. [DOI] [PubMed] [Google Scholar]
- 73.Hoover R.N., Hyer M., Pfeiffer R.M., Adam E., Bond B., Cheville A.L., Colton T., Hartge P., Hatch E., Herbst A.L., et al. Adverse Health Outcomes in Women Exposed In Utero to Diethylstilbestrol. N. Engl. J. Med. 2011;365:1304–1314. doi: 10.1056/NEJMoa1013961. [DOI] [PubMed] [Google Scholar]
- 74.Verloop J., Van Leeuwen F.E., Helmerhorst T.J.M., Van Boven H.H., Rookus M.A. Cancer risk in DES daughters. Cancer Causes Control. 2010;21:999–1007. doi: 10.1007/s10552-010-9526-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Hilakivi-Clarke L. Maternal exposure to diethylstilbestrol during pregnancy and increased breast cancer risk in daughters. Breast Cancer Res. 2014;16:208. doi: 10.1186/bcr3649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Palmer J.R. Prenatal Diethylstilbestrol Exposure and Risk of Breast Cancer. Cancer Epidemiol. Biomark. Prev. 2006;15:1509–1514. doi: 10.1158/1055-9965.EPI-06-0109. [DOI] [PubMed] [Google Scholar]
- 77.Narod S.A. Hormone replacement therapy and the risk of breast cancer. Nat. Rev. Clin. Oncol. 2011;8:669–676. doi: 10.1038/nrclinonc.2011.110. [DOI] [PubMed] [Google Scholar]
- 78.Vinogradova Y., Coupland C., Hippisley-Cox J. Use of hormone replacement therapy and risk of breast cancer: Nested case-control studies using the QResearch and CPRD databases. BMJ. 2020;371:m3873. doi: 10.1136/bmj.m3873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Steingart A., Cotterchio M., Kreiger N., Sloan M. Antidepressant medication use and breast cancer risk: A case-control study. Int. J. Epidemiol. 2003;32:961–966. doi: 10.1093/ije/dyg155. [DOI] [PubMed] [Google Scholar]
- 80.Wernli K.J., Ms J.M.H., Trentham-Dietz A., Newcomb P.A. Antidepressant medication use and breast cancer risk. Pharmacoepidemiol. Drug Saf. 2009;18:284–290. doi: 10.1002/pds.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Lawlor D.A. Systematic review of the epidemiologic and trial evidence of an association between antidepressant medication and breast cancer. J. Clin. Epidemiol. 2003;56:155–163. doi: 10.1016/S0895-4356(02)00568-1. [DOI] [PubMed] [Google Scholar]
- 82.Friedman G.D., Oestreicher N., Chan J., Quesenberry C.P., Udaltsova N., Habel L. Antibiotics and Risk of Breast Cancer: Up to 9 Years of Follow-Up of 2.1 Million Women. Cancer Epidemiol. Biomark. Prev. 2006;15:2102–2106. doi: 10.1158/1055-9965.EPI-06-0401. [DOI] [PubMed] [Google Scholar]
- 83.Pahor M., Guralnik J.M., Salive M.E., Corti M.-C., Carbonin P., Havlik R.J. Do Calcium Channel Blockers Increase the Risk of Cancer? Am. J. Hypertens. 1996;9:695–699. doi: 10.1016/0895-7061(96)00186-0. [DOI] [PubMed] [Google Scholar]
- 84.Coogan P.F., Rao S.R., Rosenberg L., Palmer J.R., Strom B.L., Zauber A.G., Stolley P.D., Shapiro S. The Relationship of Nonsteroidal Anti-inflammatory Drug Use to the Risk of Breast Cancer. Prev. Med. 1999;29:72–76. doi: 10.1006/pmed.1999.0518. [DOI] [PubMed] [Google Scholar]
- 85.Denoyelle C., Vasse M., Körner M., Mishal Z., Ganné F., Vannier J.-P., Soria J., Soria C. Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits the signaling pathways involved in the invasiveness and metastatic properties of highly invasive breast cancer cell lines: An in vitro study. Carcinogenesis. 2001;22:1139–1148. doi: 10.1093/carcin/22.8.1139. [DOI] [PubMed] [Google Scholar]
- 86.Chen X., Wang Q., Zhang Y., Xie Q., Tan X. Physical Activity and Risk of Breast Cancer: A Meta-Analysis of 38 Cohort Studies in 45 Study Reports. Value Health. 2018;22:104–128. doi: 10.1016/j.jval.2018.06.020. [DOI] [PubMed] [Google Scholar]
- 87.Kyu H.H., Bachman V.F., Alexander L.T., Mumford J.E., Afshin A., Estep K., Veerman L., Delwiche K., Iannarone M.L., Moyer M.L., et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: Systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ. 2016;354:i3857. doi: 10.1136/bmj.i3857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Bernstein L., Ross R.K. Endogenous Hormones and Breast Cancer Risk. Epidemiol. Rev. 1993;15:48–65. doi: 10.1093/oxfordjournals.epirev.a036116. [DOI] [PubMed] [Google Scholar]
- 89.Thune I., Brenn T., Lund E., Gaard M. Physical Activity and the Risk of Breast Cancer. N. Engl. J. Med. 1997;336:1269–1275. doi: 10.1056/NEJM199705013361801. [DOI] [PubMed] [Google Scholar]
- 90.Hoffinan-Goetz L. Influence of Physical Activity and Exercise on Innate Immunity. Nutr. Rev. 2009;56:S126–S130. doi: 10.1111/j.1753-4887.1998.tb01629.x. [DOI] [PubMed] [Google Scholar]
- 91.Hoffman-Goetz L., Apter D., Demark-Wahnefried W., Goran M.I., McTiernan A. Reichman ME. Possible mechanisms mediating an association between physical activity and breast cancer. Cancer. 1998;83(Suppl. 3):621–628. doi: 10.1002/(SICI)1097-0142(19980801)83:3+<621::AID-CNCR4>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
- 92.Kolb R., Zhang W. Obesity and Breast Cancer: A Case of Inflamed Adipose Tissue. Cancers. 2020;12:1686. doi: 10.3390/cancers12061686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Wang X., Hui T.-L., Wang M.-Q., Liu H., Li R.-Y., Song Z.-C. Body Mass Index at Diagnosis as a Prognostic Factor for Early-Stage Invasive Breast Cancer after Surgical Resection. Oncol. Res. Treat. 2019;42:195–201. doi: 10.1159/000496548. [DOI] [PubMed] [Google Scholar]
- 94.Sun L., Zhu Y., Qian Q., Tang L. Body mass index and prognosis of breast cancer. Medicine. 2018;97:e11220. doi: 10.1097/MD.0000000000011220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.James F., Wootton S., Jackson A., Wiseman M., Copson E., Cutress R. Obesity in breast cancer—What is the risk factor? Eur. J. Cancer. 2015;51:705–720. doi: 10.1016/j.ejca.2015.01.057. [DOI] [PubMed] [Google Scholar]
- 96.Protani M., Coory M., Martin J. Effect of obesity on survival of women with breast cancer: Systematic review and meta-analysis. Breast Cancer Res. Treat. 2010;123:627–635. doi: 10.1007/s10549-010-0990-0. [DOI] [PubMed] [Google Scholar]
- 97.Iyengar N.M., Arthur R., Manson J.E., Chlebowski R.T., Kroenke C.H., Peterson L., Cheng T.-Y.D., Feliciano E.C., Lane D., Luo J., et al. Association of Body Fat and Risk of Breast Cancer in Postmenopausal Women with Normal Body Mass Index. JAMA Oncol. 2019;5:155–163. doi: 10.1001/jamaoncol.2018.5327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Hopper J.L., kConFab Investigators. Dite G.S., MacInnis R.J., Liao Y., Zeinomar N., Knight J.A., Southey M.C., Milne R.L., Chung W.K., et al. Age-specific breast cancer risk by body mass index and familial risk: Prospective family study cohort (ProF-SC) Breast Cancer Res. 2018;20:132. doi: 10.1186/s13058-018-1056-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Rachdaoui N., Sarkar D.K. Effects of Alcohol on the Endocrine System. Endocrinol. Metab. Clin. N. Am. 2013;42:593–615. doi: 10.1016/j.ecl.2013.05.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Erol A., Ho A.M.-C., Winham S.J., Karpyak V.M. Sex hormones in alcohol consumption: A systematic review of evidence. Addict. Biol. 2017;24:157–169. doi: 10.1111/adb.12589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Coronado G.D., Beasley J., Livaudais J. Alcohol consumption and the risk of breast cancer. Salud. Publica. Mex. 2011;53:440–447. [PubMed] [Google Scholar]
- 102.Zeinomar N., kConFab Investigators. Knight J.A., Genkinger J.M., Phillips K.-A., Daly M.B., Milne R.L., Dite G.S., Kehm R.D., Liao Y., et al. Alcohol consumption, cigarette smoking, and familial breast cancer risk: Findings from the Prospective Family Study Cohort (ProF-SC) Breast Cancer Res. 2019;21:128. doi: 10.1186/s13058-019-1213-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Liu Y., Nguyen N., Colditz G.A. Links between Alcohol Consumption and Breast Cancer: A Look at the Evidence. Women’s Health. 2015;11:65–77. doi: 10.2217/WHE.14.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Terry P.D., Rohan T.E. Cigarette smoking and the risk of breast cancer in women: A review of the literature. Cancer Epidemiol. Biomark. Prev. 2002;11:953–971. [PubMed] [Google Scholar]
- 105.Catsburg C., Miller A.B., Rohan T.E. Active cigarette smoking and risk of breast cancer. Int. J. Cancer. 2014;136:2204–2209. doi: 10.1002/ijc.29266. [DOI] [PubMed] [Google Scholar]
- 106.Jones M., Schoemaker M.J., Wright L.B., Ashworth A., Swerdlow A.J. Smoking and risk of breast cancer in the Generations Study cohort. Breast Cancer Res. 2017;19:118. doi: 10.1186/s13058-017-0908-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Couch F.J., Cerhan J.R., Vierkant R.A., Grabrick D.M., Therneau T.M., Pankratz V.S., Hartmann L.C., Olson J.E., Vachon C.M., Sellers T.A. Cigarette smoking increases risk for breast cancer in high-risk breast cancer families. Cancer Epidemiol. Biomark. Prev. 2001;10:327–332. [PubMed] [Google Scholar]
- 108.Misotti A.M., Gnagnarella P. Ecancermedicalscience. Ecancermedicalscience. 2013;7:365. doi: 10.3332/ecancer.2013.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Cui Y. Vitamin D, Calcium, and Breast Cancer Risk: A Review. Cancer Epidemiol. Biomark. Prev. 2006;15:1427–1437. doi: 10.1158/1055-9965.EPI-06-0075. [DOI] [PubMed] [Google Scholar]
- 110.Atoum M., Alzoughool F. Vitamin D and Breast Cancer: Latest Evidence and Future Steps. Breast Cancer: Basic Clin. Res. 2017;11:1178223417749816. doi: 10.1177/1178223417749816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.El-Sharkawy A., Malki A. Vitamin D Signaling in Inflammation and Cancer: Molecular Mechanisms and Therapeutic Implications. Molecules. 2020;25:3219. doi: 10.3390/molecules25143219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Estébanez N., Gómez-Acebo I., Palazuelos C., Llorca J., Dierssen-Sotos T. Vitamin D exposure and Risk of Breast Cancer: A meta-analysis. Sci. Rep. 2018;8:9039. doi: 10.1038/s41598-018-27297-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.Huss L., Butt S.T., Borgquist S., Elebro K., Sandsveden M., Rosendahl A., Manjer J. Vitamin D receptor expression in invasive breast tumors and breast cancer survival. Breast Cancer Res. 2019;21:84. doi: 10.1186/s13058-019-1169-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114.Zhou L., Chen B., Sheng L., Turner A. The effect of vitamin D supplementation on the risk of breast cancer: A trial sequential meta-analysis. Breast Cancer Res. Treat. 2020;182:1–8. doi: 10.1007/s10549-020-05669-4. [DOI] [PubMed] [Google Scholar]
- 115.Al-Naggar R.A., Anil S. Artificial Light at Night and Cancer: Global Study. Asian Pac. J. Cancer Prev. 2016;17:4661–4664. doi: 10.22034/APJCP.2016.17.10.4661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Johns L.E., Jones M., Schoemaker M., McFadden E., Ashworth A., Swerdlow A. Domestic light at night and breast cancer risk: A prospective analysis of 105,000 UK women in the Generations Study. Br. J. Cancer. 2018;118:600–606. doi: 10.1038/bjc.2017.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Dandamudi A., Tommie J., Nommsen-Rivers L., Couch S. Dietary Patterns and Breast Cancer Risk: A Systematic Review. Anticancer. Res. 2018;38:3209–3222. doi: 10.21873/anticanres.12586. [DOI] [PubMed] [Google Scholar]
- 118.Fiolet T., Srour B., Sellem L., Kesse-Guyot E., Allès B., Méjean C., Deschasaux M., Fassier P., Latino-Martel P., Beslay M., et al. Consumption of ultra-processed foods and cancer risk: Results from Nutri Net-Santé prospective cohort. BMJ. 2018;360:k322. doi: 10.1136/bmj.k322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Castelló A., Pollán M., Buijsse B., Ruiz A., Casas A.M., Baena-Cañada J.M., Lope V., Antolín S., Ramos M., Munoz M., et al. Spanish Mediterranean diet and other dietary patterns and breast cancer risk: Case–control Epi GEICAM study. Br. J. Cancer. 2014;111:1454–1462. doi: 10.1038/bjc.2014.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.Kotepui M. Diet and risk of breast cancer. Contemp. Oncol. 2016;20:13–19. doi: 10.5114/wo.2014.40560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Li M.-J., Yin Y.-C., Wang J., Jiang Y.-F. Green tea compounds in breast cancer prevention and treatment. World J. Clin. Oncol. 2014;5:520–528. doi: 10.5306/wjco.v5.i3.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Liu D., Chen Z. The Effect of Curcumin on Breast Cancer Cells. J. Breast Cancer. 2013;16:133–137. doi: 10.4048/jbc.2013.16.2.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Wright L., Frye J., Gorti B., Timmermann B., Funk J. Bioactivity of Turmeric-derived Curcuminoids and Related Metabolites in Breast Cancer. Curr. Pharm. Des. 2013;19:6218–6225. doi: 10.2174/1381612811319340013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Casey S.C., Vaccari M., Al-Mulla F., Altemaimi R., Amedei A., Barcellos-Hoff M.H., Brown D., Chapellier M., Christopher J., Curran C.S., et al. The effect of environmental chemicals on the tumor microenvironment. Carcinogenesis. 2015;36:S160–S183. doi: 10.1093/carcin/bgv035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125.Videnros C., Selander J., Wiebert P., Albin M., Plato N., Borgquist S., Manjer J., Gustavsson P. Investigating the risk of breast cancer among women exposed to chemicals: A nested case–control study using improved exposure estimates. Int. Arch. Occup. Environ. Health. 2019;93:261–269. doi: 10.1007/s00420-019-01479-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Rodgers K.M., Udesky J.O., Rudel R.A., Brody J.G. Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms. Environ. Res. 2018;160:152–182. doi: 10.1016/j.envres.2017.08.045. [DOI] [PubMed] [Google Scholar]
- 127.Eve L., Fervers B., Le Romancer M., Etienne-Selloum N. Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer. Int. J. Mol. Sci. 2020;21:9139. doi: 10.3390/ijms21239139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Leso V., Ercolano M.L., Cioffi D.L., Iavicoli I. Occupational Chemical Exposure and Breast Cancer Risk According to Hormone Receptor Status: A Systematic Review. Cancers. 2019;11:1882. doi: 10.3390/cancers11121882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 129.Velicer C.M., Lampe J.W., Heckbert S.R., Potter J.D., Taplin S.H. Hypothesis: Is antibiotic use associated with breast cancer? Cancer Causes Control. 2003;14:739–747. doi: 10.1023/A:1026323424792. [DOI] [PubMed] [Google Scholar]
- 130.Brandes L.J., Arron R.J., Bogdanovic R.P., Tong J., Zaborniak C.L., Hogg G.R., Warrington R.C., Fang W., Labella F.S. Stimulation of malignant growth in rodents by antidepressant drugs at clinically relevant doses. Cancer Res. 1992;52:3796–3800. [PubMed] [Google Scholar]
- 131.Bjarnadottir O., Romero Q., Bendahl P.O., Jirström K., Rydén L., Loman N., Uhlén M., Johannesson H., Rose C., Grabau D., et al. Targeting HMG-CoA reductase with statins in a window-of-opportunity breast cancer trial. Breast Cancer Res. Treat. 2013;138:499–508. doi: 10.1007/s10549-013-2473-6. [DOI] [PubMed] [Google Scholar]
- 132.Olsen J.H., Sørensen H.T., Friis S., McLaughli J.K., Steffensen F.H., Nielsen G.L., Andersen M., Fraumeni J.F., Jr., Olsen J. Cancer risk in users of calcium channel blockers. Hypertension. 1997;29:1091–1094. doi: 10.1161/01.HYP.29.5.1091. [DOI] [PubMed] [Google Scholar]
- 133.Zhang S.M., Cook N.R., Manson J.E., Lee I.-M., Buring J.E. Low-dose aspirin and breast cancer risk: Results by tumour characteristics from a randomised trial. Br. J. Cancer. 2008;98:989–991. doi: 10.1038/sj.bjc.6604240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Tavassoli F.A. Pathology and Genetics of Tumours of the Breast and Female Genital Organs. World Hhealth Organization Classification of Tumours; Lyon, France: 2003. [Google Scholar]
- 135.Weigelt B., Horlings H.M., Kreike B., Hayes M.M., Hauptmann M., Wessels L.F.A., De Jong D., van de Vijver M., Veer L.J.V., Peterse J.L. Refinement of breast cancer classification by molecular characterization of histological special types. J. Pathol. 2008;216:141–150. doi: 10.1002/path.2407. [DOI] [PubMed] [Google Scholar]
- 136.Erber R., Hartmann A. Histology of Luminal Breast Cancer. Breast Care. 2020;15:327–336. doi: 10.1159/000509025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Perou C., Sørlie T., Eisen M., Van De Rijn M., Jeffrey S., Rees C.A., Pollack J.R., Ross D.T., Johnsen H., Akslen L.A., et al. Molecular portraits of human breast tumours. Nat. Cell Biol. 2000;406:747–752. doi: 10.1038/35021093. [DOI] [PubMed] [Google Scholar]
- 138.Sørlie T. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA. 2001;98:10869–10874. doi: 10.1073/pnas.191367098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139.Prat A., Perou C.M. Deconstructing the molecular portraits of breast cancer. Mol. Oncol. 2001;5:5–23. doi: 10.1016/j.molonc.2010.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Network T.C.G.A. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70. doi: 10.1038/nature11412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.Herschkowitz J.I., Simin K., Weigman V.J., Mikaelian I., Usary J., Hu Z., Rasmussen K.E., Jones L.P., Assefnia S., Chandrasekharan S., et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 2007;8:R76. doi: 10.1186/gb-2007-8-5-r76. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Parker J.S., Mullins M., Cheang M.C.U., Leung S., Voduc D., Vickery T., Davies S., Fauron C., He X., Hu Z., et al. Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes. J. Clin. Oncol. 2009;27:1160–1167. doi: 10.1200/JCO.2008.18.1370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Gnant M., Filipits M., Greil R., Stoeger H., Rudas M., Bago-Horvath Z., Mlineritsch B., Kwasny W., Knauer M., Singer C., et al. Predicting distant recurrence in receptor-positive breast cancer patients with limited clinicopathological risk: Using the PAM50 Risk of Recurrence score in 1478 postmenopausal patients of the ABCSG-8 trial treated with adjuvant endocrine therapy alone. Ann. Oncol. 2013;25:339–345. doi: 10.1093/annonc/mdt494. [DOI] [PubMed] [Google Scholar]
- 144.Sestak I. Prediction of late distant recurrence after 5 years of endocrine treatment: A combined analysis of patients from the Austrian breast and colorectal cancer study group 8 and arimidex, tamoxifen alone or in combination randomized trials using the PAM50 risk of recurrence score. J. Clin. Oncol. 2015;33:916–922. doi: 10.1200/JCO.2014.55.6894. [DOI] [PubMed] [Google Scholar]
- 145.Prat A., Galván P., Jimenez B., Buckingham W., Jeiranian H.A., Schaper C., Vidal M., Álvarez M., Díaz S., Ellis C., et al. Prediction of Response to Neoadjuvant Chemotherapy Using Core Needle Biopsy Samples with the Prosigna Assay. Clin. Cancer Res. 2015;22:560–566. doi: 10.1158/1078-0432.CCR-15-0630. [DOI] [PubMed] [Google Scholar]
- 146.Howlader N., Altekruse S.F., Li C.I., Chen V.W., Clarke C.A., Ries L.A.G., Cronin K.A. US Incidence of Breast Cancer Subtypes Defined by Joint Hormone Receptor and HER2 Status. J. Natl. Cancer Inst. 2014;106:dju055. doi: 10.1093/jnci/dju055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147.Weigelt B., Geyer F.C., Reis-Filho J.S. Histological types of breast cancer: How special are they? Mol. Oncol. 2010;4:192–208. doi: 10.1016/j.molonc.2010.04.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.Makki J. Diversity of Breast Carcinoma: Histological Subtypes and Clinical Relevance. Clin. Med. Insights Pathol. 2015;8:23–31. doi: 10.4137/CPath.S31563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149.Weigelt B., Baehner F.L., Reis-Filho J.S. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: A retrospective of the last decade. J. Pathol. J. Pathol. Soc. Great Br. Irel. 2010;220:263–280. doi: 10.1002/path.2648. [DOI] [PubMed] [Google Scholar]
- 150.Prat A. Prognostic significance of progesterone receptor–positive tumor cells within immunohistochemically defined luminal A breast cancer. J. Clin. Oncol. 2013;31:203. doi: 10.1200/JCO.2012.43.4134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 151.Eroles P., Bosch A., Pérez-Fidalgo J.A., Lluch A. Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways. Cancer Treat. Rev. 2012;38:698–707. doi: 10.1016/j.ctrv.2011.11.005. [DOI] [PubMed] [Google Scholar]
- 152.Ades F. Luminal B breast cancer: Molecular characterization, clinical management, and future perspectives. J. Clin. Oncol. 2014;32:2794–2803. doi: 10.1200/JCO.2013.54.1870. [DOI] [PubMed] [Google Scholar]
- 153.Cheang M.C.U., Chia S.K., Voduc D., Gao D., Leung S., Snider J., Watson M., Davies S., Bernard P.S., Parker J.S., et al. Ki67 Index, HER2 Status, and Prognosis of Patients with Luminal B Breast Cancer. J. Natl. Cancer Inst. 2009;101:736–750. doi: 10.1093/jnci/djp082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 154.Raj-Kumar P.-K., Liu J., Hooke J.A., Kovatich A.J., Kvecher L., Shriver C.D., Hu H. PCA-PAM50 improves consistency between breast cancer intrinsic and clinical subtyping reclassifying a subset of luminal A tumors as luminal B. Sci. Rep. 2019;9:7956. doi: 10.1038/s41598-019-44339-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Xu C., Wei Q., Guo S.J., Zhou J., Mei J., Jiang Z.N., Shen J.G., Wang L.B. FOXA1 Expression Significantly Predict Response to Chemotherapy in Estrogen Receptor-Positive Breast Cancer Patients. Ann. Surg. Oncol. 2015;22:2034–2039. doi: 10.1245/s10434-014-4313-2. [DOI] [PubMed] [Google Scholar]
- 156.Ranjit K. Breast cancer. Lancet. 2005;365:1742. doi: 10.1016/S0140-6736(05)66547-6. [DOI] [PubMed] [Google Scholar]
- 157.Roberts S.A., Lawrence M.S., Klimczak L.J., Grimm S.A., Fargo D., Stojanov P., Kiezun A., Kryukov G., Carter S.L., Saksena G., et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 2013;45:970–976. doi: 10.1038/ng.2702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 158.Kuong K.J., A Loeb L. APOBEC3B mutagenesis in cancer. Nat. Genet. 2013;45:964–965. doi: 10.1038/ng.2736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159.Kanu N., Cerone M.A., Goh G., Zalmas P., Bartkova J., Dietzen M., McGranahan N., Rogers R., Law E.K., Gromova I., et al. DNA replication stress mediates APOBEC3 family mutagenesis in breast cancer. Genome Biol. 2016;17:185. doi: 10.1186/s13059-016-1042-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 160.Prat A., Carey L.A., Adamo B., Vidal M., Tabernero J., Cortes J., Parker J.S., Perou C., Baselga J. Molecular Features and Survival Outcomes of the Intrinsic Subtypes Within HER2-Positive Breast Cancer. J. Natl. Cancer Inst. 2014;106:dju152. doi: 10.1093/jnci/dju152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 161.Plasilova M.L., Hayse B., Killelea B.K., Horowitz N.R., Chagpar A.B., Lannin D.R. Features of triple-negative breast cancer. Medicine. 2016;95:e4614. doi: 10.1097/MD.0000000000004614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 162.Newman L.A., Reis-Filho J.S., Morrow M., Carey L.A., King T.A. The 2014 Society of Surgical Oncology Susan G. Komen for the Cure Symposium: Triple-Negative Breast Cancer. Ann. Surg. Oncol. 2014;22:874–882. doi: 10.1245/s10434-014-4279-0. [DOI] [PubMed] [Google Scholar]
- 163.Pareja F. Triple-negative breast cancer: The importance of molecular and histologic subtyping, and recognition of low-grade variants. NPJ Breast Cancer. 2016;2:16036. doi: 10.1038/npjbcancer.2016.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 164.Wetterskog D. Adenoid cystic carcinomas constitute a genomically distinct subgroup of triple-negative and basal-like breast cancers. J. Pathol. 2012;226:84–96. doi: 10.1002/path.2974. [DOI] [PubMed] [Google Scholar]
- 165.Badve S., Dabbs D.J., Schnitt S.J., Baehner F.L., Decker T., Eusebi V., Fox S., Ichihara S., Jacquemier J., Lakhani S.R., et al. Basal-like and triple-negative breast cancers: A critical review with an emphasis on the implications for pathologists and oncologists. Mod. Pathol. 2010;24:157–167. doi: 10.1038/modpathol.2010.200. [DOI] [PubMed] [Google Scholar]
- 166.Lehmann B., Bauer J.A., Chen X., Sanders M.E., Chakravarthy A.B., Shyr Y., Pietenpol J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig. 2011;121:2750–2767. doi: 10.1172/JCI45014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 167.Wang D.-Y., Jiang Z., Ben-David Y., Woodgett J.R., Zacksenhaus E. Molecular stratification within triple-negative breast cancer subtypes. Sci. Rep. 2019;9:19107. doi: 10.1038/s41598-019-55710-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 168.Santonja A., Sánchez-Muñoz A., Lluch A., Chica-Parrado M.R., Albanell J., Chacón J.I., Antolín S., Jerez J.M., De La Haba J., De Luque V., et al. Triple negative breast cancer subtypes and pathologic complete response rate to neoadjuvant chemotherapy. Oncotarget. 2018;9:26406–26416. doi: 10.18632/oncotarget.25413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 169.Prat A., Parker J.S., Karginova O., Fan C., Livasy C., Herschkowitz J.I., He X., Perou C.M. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12:R68. doi: 10.1186/bcr2635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 170.Hennessy B.T., Gonzalez-Angulo A.-M., Stemke-Hale K., Gilcrease M.Z., Krishnamurthy S., Lee J.-S., Fridlyand J., Sahin A.A., Agarwal R., Joy C., et al. Characterization of a Naturally Occurring Breast Cancer Subset Enriched in Epithelial-to-Mesenchymal Transition and Stem Cell Characteristics. Cancer Res. 2009;69:4116–4124. doi: 10.1158/0008-5472.CAN-08-3441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 171.Dias K., Dvorkin-Gheva A., Hallett R.M., Wu Y., Hassell J., Pond G.R., Levine M., Whelan T., Bane A.L. Claudin-Low Breast Cancer; Clinical & Pathological Characteristics. PLoS ONE. 2017;12:e0168669. doi: 10.1371/journal.pone.0168669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 172.Morel A.-P., Ginestier C., Pommier R.M., Cabaud O., Ruiz E., Wicinski J., Devouassoux-Shisheboran M., Combaret V., Finetti P., Chassot C., et al. A stemness-related ZEB1–MSRB3 axis governs cellular pliancy and breast cancer genome stability. Nat. Med. 2017;23:568–578. doi: 10.1038/nm.4323. [DOI] [PubMed] [Google Scholar]
- 173.Puisieux A., Pommier R., Morel A.-P., Lavial F. Cellular Pliancy and the Multistep Process of Tumorigenesis. Cancer Cell. 2018;33:164–172. doi: 10.1016/j.ccell.2018.01.007. [DOI] [PubMed] [Google Scholar]
- 174.Parise C.A., Bauer K.R., Brown M.M., Caggiano V. Breast Cancer Subtypes as Defined by the Estrogen Receptor (ER), Progesterone Receptor (PR), and the Human Epidermal Growth Factor Receptor 2 (HER2) among Women with Invasive Breast Cancer in California, 1999–2004. Breast J. 2009;15:593–602. doi: 10.1111/j.1524-4741.2009.00822.x. [DOI] [PubMed] [Google Scholar]
- 175.Carey L.A., Perou C.M., Livasy C.A., Dressler L.G., Cowan D., Conway K., Karaca G., Troester M.A., Tse C.K., Edmiston S., et al. Race, Breast Cancer Subtypes, and Survival in the Carolina Breast Cancer Study. JAMA. 2006;295:2492–2502. doi: 10.1001/jama.295.21.2492. [DOI] [PubMed] [Google Scholar]
- 176.O’Brien K.M., Cole S.R., Tse C.K., Perou C.M., Carey L.A., Foulkes W.D., Dressler L.G., Geradts J., Millikan R.C. Intrinsic breast tumor subtypes, race, and long-term survival in the Carolina Breast Cancer Study. Clin. Cancer Res. 2010;16:6100–6110. doi: 10.1158/1078-0432.CCR-10-1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 177.Maisonneuve P., Disalvatore D., Rotmensz N., Curigliano G., Colleoni M., Dellapasqua S., Pruneri G., Mastropasqua M.G., Luini A., Bassi F., et al. Proposed new clinicopathological surrogate definitions of luminal A and luminal B (HER2-negative) intrinsic breast cancer subtypes. Breast Cancer Res. 2014;16:R65. doi: 10.1186/bcr3679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 178.Cheang M.C.U. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin. Cancer Res. 2008;14:1368–1376. doi: 10.1158/1078-0432.CCR-07-1658. [DOI] [PubMed] [Google Scholar]
- 179.Goldhrisch E.P., Winer A. Panel members. Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2013. Ann. Oncol. 2013;24:2206–2223. doi: 10.1093/annonc/mdt303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 180.Prat A., Pineda E., Adamo B., Galván P., Fernandez-Martinez A., Gaba L., Díez M., Viladot M., Arance A., Munoz M. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast. 2015;24:S26–S35. doi: 10.1016/j.breast.2015.07.008. [DOI] [PubMed] [Google Scholar]
- 181.Vuong D., Simpson P.T., Green B., Cummings M.C., Lakhani S.R. Molecular classification of breast cancer. Virchows Arch. 2014;465:1–14. doi: 10.1007/s00428-014-1593-7. [DOI] [PubMed] [Google Scholar]
- 182.AJCC (American Joint Committee on Cancer) In: Cancer Staging Manual. 8th ed. Amin M.B., Edge S.B., Greene F.L., editors. Springer; Chicago, IL, USA: 2018. 3rd printing. [Google Scholar]
- 183.Hammond M.E.H., Hayes D.F., Dowsett M., Allred D.C., Hagerty K.L., Badve S., Fitzgibbons P.L., Francis G., Goldstein N.S., Hayes M., et al. American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for Immunohistochemical Testing of Estrogen and Progesterone Receptors in Breast Cancer. J. Clin. Oncol. 2010;28:2784–2795. doi: 10.1200/JCO.2009.25.6529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 184.Wolff A., Hammond M.E.H., Hicks D.G., Dowsett M., McShane L.M., Allison K.H., Allred D.C., Bartlett J.M., Bilous M., Fitzgibbons P., et al. Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Update. J. Clin. Oncol. 2013;31:3997–4013. doi: 10.1200/JCO.2013.50.9984. [DOI] [PubMed] [Google Scholar]
- 185.Elston C., Ellis I. pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up. Histopathology. 1991;19:403–410. doi: 10.1111/j.1365-2559.1991.tb00229.x. [DOI] [PubMed] [Google Scholar]
- 186.Bloom H.J.G., Richardson W.W. Histological grading and prognosis in breast cancer: A study of 1409 cases of which 359 have been followed for 15 years. Br. J. Cancer. 1957;11:359. doi: 10.1038/bjc.1957.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 187.Sparano J.A., Gray R.J., Makower D.F., Pritchard K.I., Albain K.S., Hayes D.F., Geyer C.E., Dees E.C., Perez E.A., Olson J.A., et al. Prospective Validation of a 21-Gene Expression Assay in Breast Cancer. N. Engl. J. Med. 2015;373:2005–2014. doi: 10.1056/NEJMoa1510764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 188.Stemmer S.M., Steiner M., Rizel S., Soussan-Gutman L., Ben-Baruch N., Bareket-Samish A., Geffen D.B., Nisenbaum B., Isaacs K., Fried G., et al. Clinical outcomes in patients with node-negative breast cancer treated based on the recurrence score results: Evidence from a large prospectively designed registry. NPJ Breast Cancer. 2017;3:33. doi: 10.1038/s41523-017-0034-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 189.Weiss A., Mac Gregor M.C., Lichtensztajn D., Yi M., Tadros A., Hortobagyi G.N., Giordano S.H., Hunt K.K., Mittendorf E.A. Validation Study of the American Joint Committee on Cancer Eighth Edition Prognostic Stage Compared with the Anatomic Stage in Breast Cancer. JAMA Oncol. 2018;4:203–209. doi: 10.1001/jamaoncol.2017.4298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 190.Abdel-Rahman O. Validation of the 8th AJCC prognostic staging system for breast cancer in a population-based setting. Breast Cancer Res. Treat. 2017;168:269–275. doi: 10.1007/s10549-017-4577-x. [DOI] [PubMed] [Google Scholar]
- 191.Colomer R., Aranda F., Albanell J., García-Caballero T., Ciruelos E., López-García M., Cortés J., Rojo F., Martín M., Palacios-Calvo J. Biomarkers in breast cancer: A consensus statement by the Spanish Society of Medical Oncology and the Spanish Society of Pathology. Clin. Transl. Oncol. 2017;20:815–826. doi: 10.1007/s12094-017-1800-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 192.Li Y., Yang D., Yin X., Zhang X., Huang J., Wu Y., Wang M., Yi Z., Li H., Li H., et al. Clinicopathological Characteristics and Breast Cancer–Specific Survival of Patients with Single Hormone Receptor–Positive Breast Cancer. JAMA Netw. Open. 2020;3:e1918160. doi: 10.1001/jamanetworkopen.2019.18160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 193.Duffy M., Harbeck N., Nap M., Molina R., Nicolini A., Senkus E., Cardoso F. Clinical use of biomarkers in breast cancer: Updated guidelines from the European Group on Tumor Markers (EGTM) Eur. J. Cancer. 2017;75:284–298. doi: 10.1016/j.ejca.2017.01.017. [DOI] [PubMed] [Google Scholar]
- 194.Nasrazadani A., Thomas R.A., Oesterreich S., Lee A.V. Precision Medicine in Hormone Receptor-Positive Breast Cancer. Front. Oncol. 2018;8:144. doi: 10.3389/fonc.2018.00144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 195.Tse L.A., Li M., Chan W.-C., Kwok C.-H., Leung S.-L., Wu C., Yu I.T.-S., Yu W.-C., Lao X.Q., Wang X., et al. Familial Risks and Estrogen Receptor-Positive Breast Cancer in Hong Kong Chinese Women. PLoS ONE. 2015;10:e0120741. doi: 10.1371/journal.pone.0120741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 196.Konan H.-P., Kassem L., Omarjee S., Surmieliova-Garnès A., Jacquemetton J., Cascales E., Rezza A., Trédan O., Treilleux I., Poulard C., et al. ERα-36 regulates progesterone receptor activity in breast cancer. Breast Cancer Res. 2020;22:50. doi: 10.1186/s13058-020-01278-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 197.Obr A.E., Edwards D.P. The biology of progesterone receptor in the normal mammary gland and in breast cancer. Mol. Cell. Endocrinol. 2012;357:4–17. doi: 10.1016/j.mce.2011.10.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 198.Wu J.-R., Zhao Y., Zhou X.-P., Qin X. Estrogen receptor 1 and progesterone receptor are distinct biomarkers and prognostic factors in estrogen receptor-positive breast cancer: Evidence from a bioinformatic analysis. Biomed. Pharmacother. 2019;121:109647. doi: 10.1016/j.biopha.2019.109647. [DOI] [PubMed] [Google Scholar]
- 199.Patani N., Martin L.-A., Dowsett M. Biomarkers for the clinical management of breast cancer: International perspective. Int. J. Cancer. 2012;133:1–13. doi: 10.1002/ijc.27997. [DOI] [PubMed] [Google Scholar]
- 200.Freelander A., Brown L., Parker A., Segara D., Portman N., Lau B., Lim E. Molecular Biomarkers for Contemporary Therapies in Hormone Receptor-Positive Breast Cancer. Genes. 2021;12:285. doi: 10.3390/genes12020285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 201.Kohler B.A., Sherman R.L., Howlader N., Jemal A., Ryerson A.B., Henry K.A., Boscoe F.P., Cronin K.A., Lake A., Noone A.-M., et al. Annual Report to the Nation on the Status of Cancer, 1975-2011, Featuring Incidence of Breast Cancer Subtypes by Race/Ethnicity, Poverty, and State. J. Natl. Cancer Inst. 2015;107:djv048. doi: 10.1093/jnci/djv048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 202.Kontani K., Kuroda N., Hashimoto S.-I., Murazawa C., Norimura S., Tanaka H., Ohtani M., Fujiwara-Honjo N., Kushida Y., Date M., et al. Clinical usefulness of human epidermal growth factor receptor-2 extracellular domain as a biomarker for monitoring cancer status and predicting the therapeutic efficacy in breast cancer. Cancer Biol. Ther. 2013;14:20–28. doi: 10.4161/cbt.22626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 203.Kim H.-A., Lee J.K., Kim E.-K., Seol H., Noh W.C. Serum human epidermal growth factor receptor 2 levels as a real-time marker for tumor burden in breast cancer patients. J. Surg. Oncol. 2013;109:421–425. doi: 10.1002/jso.23510. [DOI] [PubMed] [Google Scholar]
- 204.Furrer D., Paquet C., Jacob S., Diorio C. The Human Epidermal Growth Factor Receptor 2 (HER2) as a Prognostic and Predictive Biomarker: Molecular Insights into HER2 Activation and Diagnostic Implications. Cancer Progn. 2018 doi: 10.5772/intechopen.78271. [DOI] [Google Scholar]
- 205.Iqbal N., Iqbal N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol. Biol. Int. 2014;2014:852748. doi: 10.1155/2014/852748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 206.Nishimura R., Osako T., Okumura Y., Hayashi M., Toyozumi Y., Arima N. Ki-67 as a prognostic marker according to breast cancer subtype and a predictor of recurrence time in primary breast cancer. Exp. Ther. Med. 2010;1:747–754. doi: 10.3892/etm.2010.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 207.de Azambuja E., Cardoso F., De Castro G., Colozza M., Mano M.S., Durbecq V., Sotiriou C., Larsimont D., Piccart-Gebhart M., Paesmans M. Ki-67 as prognostic marker in early breast cancer: A meta-analysis of published studies involving 12,155 patients. Br. J. Cancer. 2007;96:1504–1513. doi: 10.1038/sj.bjc.6603756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 208.Pathmanathan N., Balleine R.L., Jayasinghe U.W., Bilinski K.L., Provan P.J., Byth K., Bilous A.M., Salisbury E.L., Boyages J. The prognostic value of Ki67 in systemically untreated patients with node-negative breast cancer. J. Clin. Pathol. 2014;67:222–228. doi: 10.1136/jclinpath-2013-201793. [DOI] [PubMed] [Google Scholar]
- 209.Billgren A.-M., Rutqvist, L.E., Tani E., Wilking N., Fornander T., Skoog L.A.M. Proliferating Fraction during Neoadjuvant Chemotherapy of Primary Breast Cancer in Relation to Objective Local Response and Relapse-free Survival. Acta Oncol. 1999;38:597–601. doi: 10.1080/028418699431186. [DOI] [PubMed] [Google Scholar]
- 210.González-Vela M.C., Garijo M.F., Fernández F., Val-Bernal J.F. MIB1 proliferation index in breast infiltrating carcinoma: Com-parison with other proliferative markers and association with new biological prognostic factors. Histol. Histopathol. 2001;16:399–406. doi: 10.14670/HH-16.399. [DOI] [PubMed] [Google Scholar]
- 211.Caly M., Genin P., Al Ghuzlan A., Elie C., Fréneaux P., Klijanienko J., Rosty C., Sigal-Zafrani B., Vincent-Salomon A., Douggaz A., et al. Analysis of correlation between mitotic index, MIB1 score and S-phase fraction as proliferation markers in invasive breast carcinoma. Methodological aspects and prognostic value in a series of 257 cases. Anticancer. Res. 2004;24:3283–3288. [PubMed] [Google Scholar]
- 212.Li Z., Yin S., Zhang L., Liu W., Chen B. Prognostic value of reduced E-cadherin expression in breast cancer: A meta-analysis. Oncotarget. 2017;8:16445–16455. doi: 10.18632/oncotarget.14860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 213.Horne H.N., Oh H., Sherman M.E., Palakal M., Hewitt S.M., Schmidt M.K., Milne R.L., Hardisson D., Benitez J., Blomqvist C., et al. E-cadherin breast tumor expression, risk factors and survival: Pooled analysis of 5933 cases from 12 studies in the Breast Cancer Association Consortium. Sci. Rep. 2018;8:6574. doi: 10.1038/s41598-018-23733-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 214.Qureshi H.S., Lindenm M.D., Divine G., Rajum U.B. E-cadherin status in breast cancer correlates with histologic type but does not correlate with established prognostic parameters. Am. J. Clin. Pathol. 2006;125:377–385. doi: 10.1309/WMX7DRWTFVQP2LQT. [DOI] [PubMed] [Google Scholar]
- 215.Borcherding N., Cole K., Kluz P., Jorgensen M., Kolb R., Bellizzi A., Zhang W. Re-Evaluating E-Cadherin and β-Catenin. Am. J. Pathol. 2018;188:1910–1920. doi: 10.1016/j.ajpath.2018.05.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 216.Yang L., Wang X., Zhu L., Wang H., Wang B., Zhao Q., Wang X. Significance and prognosis of epithelial-cadherin expression in invasive breast carcinoma. Oncol. Lett. 2018;16:1659–1665. doi: 10.3892/ol.2018.8836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 217.Zhou S.-Y., Chen W., Yang S.-J., Xu Z.-H., Hu J.-H., Zhang H.-D., Zhong S.-L., Tang J.-H. The emerging role of circular RNAs in breast cancer. Biosci. Rep. 2019;39:BSR20190621. doi: 10.1042/BSR20190621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 218.Tran A.M., Chalbatani G.M., Berland L., Santos M.C.D.L., Raj P., Jalali S.A., Gharagouzloo E., Ivan C., Dragomir M.P., Calin G.A. A New World of Biomarkers and Therapeutics for Female Reproductive System and Breast Cancers: Circular RNAs. Front. Cell Dev. Biol. 2020;8:50. doi: 10.3389/fcell.2020.00050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 219.Yin W.-B., Yan M.-G., Fang X., Guo J.-J., Xiong W., Zhang R.-P. Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clin. Chim. Acta. 2018;487:363–368. doi: 10.1016/j.cca.2017.10.011. [DOI] [PubMed] [Google Scholar]
- 220.Jahani S., Nazeri E., Majidzadeh-A K., Jahani M., Esmaeili R. Circular RNA; a new biomarker for breast cancer: A systematic review. J. Cell. Physiol. 2020;235:5501–5510. doi: 10.1002/jcp.29558. [DOI] [PubMed] [Google Scholar]
- 221.Brown J.R., Chinnaiyan A.M. The Potential of Circular RNAs as Cancer Biomarkers. Cancer Epidemiol. Biomark. Prev. 2020;29:2541–2555. doi: 10.1158/1055-9965.EPI-20-0796. [DOI] [PubMed] [Google Scholar]
- 222.Al Deen N.N., Lanman N.A., Chittiboyina S., Lelièvre S., Nasr R., Nassar F., Zu Dohna H., AbouHaidar M., Talhouk R. A risk progression breast epithelial 3D culture model reveals Cx43/hsa_circ_0077755/miR-182 as a biomarker axis for heightened risk of breast cancer initiation. Sci. Rep. 2021;11:2626. doi: 10.1038/s41598-021-82057-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 223.Garber J.E., Goldstein A.M., Kantor A.F., Dreyfus M.G., Fraumeni J.F., Li F.P. Follow-up study of twenty-four families with Li-Fraumeni syndrome. Cancer Res. 1991;51:6094–6097. [PubMed] [Google Scholar]
- 224.Harris C.C., Hollstein M. Clinical Implications of the p53 Tumor-Suppressor Gene. N. Engl. J. Med. 1993;329:1318–1327. doi: 10.1056/NEJM199310283291807. [DOI] [PubMed] [Google Scholar]
- 225.Williams A.B., Björn S. P53 in the DNA-damage-repair process. Cold Spring Harb. Perspect. Med. 2016;6:a026070. doi: 10.1101/cshperspect.a026070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 226.Dumay A., Feugeas J.P., Wittmer E. Distinct tumor protein p53 mutants in breast cancer subgroups. Int. J. Cancer. 2013;132:1227–1231. doi: 10.1002/ijc.27767. [DOI] [PubMed] [Google Scholar]
- 227.Olivier M., Langerød A., Carrieri P., Bergh J., Klaar S., Eyfjord J., Theillet C., Rodriguez C., Lidereau R., Bièche I., et al. The clinical value of somatic TP53 gene mutations in 1794 patients with breast cancer. Clin. Cancer Res. 2006;12:1157–1167. doi: 10.1158/1078-0432.CCR-05-1029. [DOI] [PubMed] [Google Scholar]
- 228.Petitjean A., Achatz M.I., Borresen-Dale A.L., Hainaut P., Olivier M. TP53 mutations in human cancers: Functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007;26:2157–2165. doi: 10.1038/sj.onc.1210302. [DOI] [PubMed] [Google Scholar]
- 229.Liu J., Zhang C., Feng Z. Tumor suppressor p53 and its gain-of-function mutants in cancer. Acta Biochim. Biophys. Sin. 2013;46:170–179. doi: 10.1093/abbs/gmt144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 230.Chae B.J., Bae J.S., Lee A., Park W.C., Seo Y.J., Song B.J., Kim J.S., Jung S.S. p53 as a Specific Prognostic Factor in Triple-Negative Breast Cancer. Jpn. J. Clin. Oncol. 2009;39:217–224. doi: 10.1093/jjco/hyp007. [DOI] [PubMed] [Google Scholar]
- 231.Bae S.Y., Nam S.J., Jung Y., Lee S.B., Park B.-W., Lim W., Jung S.H., Yang H.W., Jung S.P. Differences in prognosis and efficacy of chemotherapy by p53 expression in triple-negative breast cancer. Breast Cancer Res. Treat. 2018;172:437–444. doi: 10.1007/s10549-018-4928-2. [DOI] [PubMed] [Google Scholar]
- 232.Biganzoli E., Coradini D., Ambrogi F., Garibaldi J., Lisboa P., Soria D., Green A., Pedriali M., Piantelli M., Querzoli P., et al. p53 Status Identifies Two Subgroups of Triple-negative Breast Cancers with Distinct Biological Features. Jpn. J. Clin. Oncol. 2011;41:172–179. doi: 10.1093/jjco/hyq227. [DOI] [PubMed] [Google Scholar]
- 233.Duffy M.J., Synnott N.C., Crown J. Mutant p53 in breast cancer: Potential as a therapeutic target and biomarker. Breast Cancer Res. Treat. 2018;170:213–219. doi: 10.1007/s10549-018-4753-7. [DOI] [PubMed] [Google Scholar]
- 234.Wiemer E.A. The role of microRNAs in cancer: No small matter. Eur. J. Cancer. 2007;43:1529–1544. doi: 10.1016/j.ejca.2007.04.002. [DOI] [PubMed] [Google Scholar]
- 235.Iorio M., Croce C.M. MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med. 2012;4:143–159. doi: 10.1002/emmm.201100209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 236.Adhami M., Haghdoost A.A., Sadeghi B., Afshar R.M. Candidate miRNAs in human breast cancer biomarkers: A systematic review. Breast Cancer. 2017;25:198–205. doi: 10.1007/s12282-017-0814-8. [DOI] [PubMed] [Google Scholar]
- 237.Fang H., Xie J., Zhang M., Zhao Z., Wan Y., Yao Y. miRNA-21 promotes proliferation and invasion of triple-negative breast cancer cells through targeting PTEN. Am. J. Transl. Res. 2017;9:953–961. [PMC free article] [PubMed] [Google Scholar]
- 238.Rothé F., Ignatiadis M., Chaboteaux C., Haibe-Kains B., Kheddoumi N., Majjaj S., Badran B., Fayyad-Kazan H., Desmedt C., Harris A., et al. Global MicroRNA Expression Profiling Identifies MiR-210 Associated with Tumor Proliferation, Invasion and Poor Clinical Outcome in Breast Cancer. PLoS ONE. 2011;6:e20980. doi: 10.1371/journal.pone.0020980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 239.Tang Y., Zhou X., Ji J., Chen L., Cao J., Luo J., Zhang S. High Expression Levels of miR-21 and miR-210 Predict Unfavorable Survival in Breast Cancer: A Systemic Review and Meta-Analysis. Int. J. Biol. Markers. 2015;30:347–358. doi: 10.5301/jbm.5000160. [DOI] [PubMed] [Google Scholar]
- 240.Ding Y.Z.C., Zhang J., Zhang N., Li T., Fang J., Zhang Y., Zuo F., Tao Z., Tang S., Zhu W., et al. miR-145 inhibits proliferation and migration of breast cancer cells by directly or indirectly regulating TGF-β1 expression. Int. J. Oncol. 2017;50:1701–1710. doi: 10.3892/ijo.2017.3945. [DOI] [PubMed] [Google Scholar]
- 241.Enders K.O., Ng R.L., Vivian S.Y., Hong C.J., Candy L.P.H., Edmond M.S.K., Roberta P., Daniel C., Kent-Man C., Law W.L., et al. Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS ONE. 2013;8:e53141. doi: 10.1371/journal.pone.0053141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 242.Cheng C., Sun M.S., Li S., Sun X., Yang C., Xi Y., Wang L., Zhang F., Bi Y., Fu Y., et al. Hsa-miR-139-5p inhibits proliferation and causes apoptosis associated with down-regulation of c-Met. Oncotarget. 2015;6:39756–39792. doi: 10.18632/oncotarget.5476. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 243.Zhou Q., Han L.R., Zhou Y.X., Li Y. MiR-195 Suppresses Cervical Cancer Migration and Invasion through Targeting Smad3. Int. J. Gynecol. Cancer. 2016;26:817–824. doi: 10.1097/IGC.0000000000000686. [DOI] [PubMed] [Google Scholar]
- 244.Gordon S., Martinez F.O. Alternative Activation of Macrophages: Mechanism and Functions. Immunity. 2010;32:593–604. doi: 10.1016/j.immuni.2010.05.007. [DOI] [PubMed] [Google Scholar]
- 245.Mantovani A., Sozzani S., Locati M., Allavena P., Sica A. Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–555. doi: 10.1016/S1471-4906(02)02302-5. [DOI] [PubMed] [Google Scholar]
- 246.Biswas S.K., Allavena P., Mantovani A. Tumor-associated macrophages: Functional diversity, clinical significance, and open questions. Semin. Immunopathol. 2013;35:585–600. doi: 10.1007/s00281-013-0367-7. [DOI] [PubMed] [Google Scholar]
- 247.Williams C.B., Yeh E.S., Soloff A.C. Tumor-associated macrophages: Unwitting accomplices in breast cancer malignancy. NP J Breast Cancer. 2016;2:15025. doi: 10.1038/npjbcancer.2015.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 248.Yang J., Li X., Liu X., Liu Y. The role of tumor-associated macrophages in breast carcinoma invasion and metastasis. Int. J. Clin. Exp. Pathol. 2015;8:6656–6664. [PMC free article] [PubMed] [Google Scholar]
- 249.Medrek C., Pontén F., Jirström K., Leandersson K. The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer. 2012;12:306. doi: 10.1186/1471-2407-12-306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 250.Gwak J.M., Jang M.H., Kim D.I., Na Seo A., Park S.Y. Prognostic Value of Tumor-Associated Macrophages According to Histologic Locations and Hormone Receptor Status in Breast Cancer. PLoS ONE. 2015;10:e0125728. doi: 10.1371/journal.pone.0125728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 251.Yuan Z.Y., Luo R.Z., Peng R.J., Wang S.S., Xue C. High infiltration of tumor-associated macrophages in triple-negative breast cancer is associated with a higher risk of distant metastasis. Onco. Targets Ther. 2014;7:1475–1480. doi: 10.2147/OTT.S61838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 252.Zhao X., Qu J., Sun Y., Wang J., Liu X., Wang F., Zhang H., Wang W., Ma X., Gao X., et al. Prognostic significance of tumor-associated macrophages in breast cancer: A meta-analysis of the literature. Oncotarget. 2017;8:30576–30586. doi: 10.18632/oncotarget.15736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 253.Zhang H., Wang X., Shen Z., Xu J., Qin J., Sun Y. Infiltration of diametrically polarized macrophages predicts overall survival of patients with gastric cancer after surgical resection. Gastric Cancer. 2014;18:740–750. doi: 10.1007/s10120-014-0422-7. [DOI] [PubMed] [Google Scholar]
- 254.Herrera M., Herrera A., Domínguez G., Silva J., García V., García J.M., Gómez I., Soldevilla B., Muñoz C., Provencio M., et al. Cancer-associated fibroblast and M2 macrophage markers together predict outcome in colorectal cancer patients. Cancer Sci. 2013;104:437–444. doi: 10.1111/cas.12096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 255.Zhang M. A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J. Ovarian Res. 2014;7:19. doi: 10.1186/1757-2215-7-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 256.Honkanen T.J., Tikkanen A., Karihtala P., Mäkinen M., Väyrynen J.P., Koivunen J.P. Prognostic and predictive role of tumour-associated macrophages in HER2 positive breast cancer. Sci. Rep. 2019;9:10961. doi: 10.1038/s41598-019-47375-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 257.Grivennikov S.I., Greten F.R., Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–899. doi: 10.1016/j.cell.2010.01.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 258.Guthrie G.J., Charles K.A., Roxburgh C.S., Horgan P.G., McMillan D.C., Clarke S.J. The systemic inflammation-based neutro-phil-lymphocyte ratio: Experience in patients with cancer. Crit. Rev. Oncol. Hematol. 2013;88:218–230. doi: 10.1016/j.critrevonc.2013.03.010. [DOI] [PubMed] [Google Scholar]
- 259.Huang S.H., Waldron J., Milosevic M., Shen X., Ringash J., Su J., Tong L., Perez-Ordonez B., Weinreb I., Bayley A.J., et al. Prognostic value of pretreatment circulating neutrophils, monocytes, and lymphocytes in oropharyngeal cancer stratified by human papillomavirus status. Cancer. 2014;121:545–555. doi: 10.1002/cncr.29100. [DOI] [PubMed] [Google Scholar]
- 260.Li J., Jiang R., Liu W.-S., Liu Q., Xu M., Feng Q.-S., Chen L.-Z., Bei J.-X., Chen M.-Y., Zeng Y.-X. A Large Cohort Study Reveals the Association of Elevated Peripheral Blood Lymphocyte-to-Monocyte Ratio with Favorable Prognosis in Nasopharyngeal Carcinoma. PLoS ONE. 2013;8:e83069. doi: 10.1371/journal.pone.0083069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 261.Kilincalp S., Çoban S., Akinci H., Hamamcı M., Karaahmet F., Coşkun Y., Üstün Y., Şimşek Z., Erarslan E., Yuksel I. Neutrophil/lymphocyte ratio, platelet/lymphocyte ratio, and mean platelet volume as potential biomarkers for early detection and monitoring of colorectal adenocarcinoma. Eur. J. Cancer Prev. 2015;24:328–333. doi: 10.1097/CEJ.0000000000000092. [DOI] [PubMed] [Google Scholar]
- 262.Proctor M., Morrison D., Talwar D., Balmer S.M., Fletcher C.D., O’Reilly D.J. A comparison of inflammation-based prognostic scores in patients with cancer. A Glasgow inflammation outcome study. Eur J Cancer. 2011;47:2633–2641. doi: 10.1016/j.ejca.2011.03.028. [DOI] [PubMed] [Google Scholar]
- 263.Wang Y., Luo M., Chen Y., Wang Y., Zhang B., Ren Z., Bao L., Wang Y., Wang J.E., Fu Y.-X., et al. ZMYND8 expression in breast cancer cells blocks T-lymphocyte surveillance to promote tumor growth. Cancer Res. 2020 doi: 10.1158/0008-5472.CAN-20-1710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 264.Sobral-Leite M. Cancer-immune interactions in ER-positive breast cancers: PI3K pathway alterations and tumor-infiltrating lymphocytes. Breast Cancer Res. 2019;21:90. doi: 10.1186/s13058-019-1176-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 265.Mouchemore K.A., Anderson R.L., Hamilton J.A. Neutrophils, G-CSF and their contribution to breast cancer metastasis. FEBS J. 2018;285:665–679. doi: 10.1111/febs.14206. [DOI] [PubMed] [Google Scholar]
- 266.Azab B., Shah N., Radbel J., Tan P., Bhatt V., Vonfrolio S. Pretreatment neutrophil/lymphocyte ratio is superior to plate-let/lymphocyte ratio as a predictor of long-term mortality in breast cancer patients. Med. Oncol. 2013;30:432. doi: 10.1007/s12032-012-0432-4. [DOI] [PubMed] [Google Scholar]
- 267.Guo W. Prognostic value of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio for breast cancer patients: An updated meta-analysis of 17,079 individuals. Cancer Med. 2019;8:4135–4148. doi: 10.1002/cam4.2281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 268.Mandaliya H., Jones M., Oldmeadow C., Nordman I.I.C. Prognostic biomarkers in stage IV non-small cell lung cancer (NSCLC): Neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR) and advanced lung cancer inflammation index (ALI) Transl. Lung Cancer Res. 2019;8:886–894. doi: 10.21037/tlcr.2019.11.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 269.Tan D., Fu Y., Tong W., Li F. Prognostic significance of lymphocyte to monocyte ratio in colorectal cancer: A meta-analysis. Int. J. Surg. 2018;55:128–138. doi: 10.1016/j.ijsu.2018.05.030. [DOI] [PubMed] [Google Scholar]
- 270.Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–444. doi: 10.1038/nature07205. [DOI] [PubMed] [Google Scholar]
- 271.Olingy C.E., Dinh H., Hedrick C.C. Monocyte heterogeneity and functions in cancer. J. Leukoc. Biol. 2019;106:309–322. doi: 10.1002/JLB.4RI0818-311R. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 272.Hu R.-J., Liu Q., Ma J.-Y., Zhou J., Liu G. Preoperative lymphocyte-to-monocyte ratio predicts breast cancer outcome: A meta-analysis. Clin. Chim. Acta. 2018;484:1–6. doi: 10.1016/j.cca.2018.05.031. [DOI] [PubMed] [Google Scholar]
- 273.Goto W., Kashiwagi S., Asano Y., Takada K., Takahashi K., Hatano T., Takashima T., Tomita S., Motomura H., Hirakawa K., et al. Predictive value of lymphocyte-to-monocyte ratio in the preoperative setting for progression of patients with breast cancer. BMC Cancer. 2018;18:1137. doi: 10.1186/s12885-018-5051-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 274.Zou Z.-Y., Liu H.-L., Ning N., Li S.-Y., Du X.-H., Li R. Clinical significance of pre-operative neutrophil lymphocyte ratio and platelet lymphocyte ratio as prognostic factors for patients with colorectal cancer. Oncol. Lett. 2016;11:2241–2248. doi: 10.3892/ol.2016.4216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 275.Zhang X., Zhao W., Yu Y., Qi X., Song L., Zhang C., Li G., Yang L. Clinicopathological and prognostic significance of platelet-lymphocyte ratio (PLR) in gastric cancer: An updated meta-analysis. World J. Surg. Oncol. 2020;18:1–12. doi: 10.1186/s12957-020-01952-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 276.Li B., Zhou P., Liu Y., Wei H., Yang X., Chen T., Xiao J. Platelet-to-lymphocyte ratio in advanced Cancer: Review and meta-analysis. Clin. Chim. Acta. 2018;483:48–56. doi: 10.1016/j.cca.2018.04.023. [DOI] [PubMed] [Google Scholar]
- 277.Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J. Hematol. Oncol. 2018;11:125. doi: 10.1186/s13045-018-0669-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 278.Jiang L. Platelet releasate promotes breast cancer growth and angiogenesis via VEGF–integrin cooperative signal-ling. Br. J. Cancer. 2017;117:695–703. doi: 10.1038/bjc.2017.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 279.Kubota S.I., Takahashi K., Mano T., Matsumoto K., Katsumata T., Shi S., Tainaka K., Ueda H.R., Ehata S., Miyazono K. Whole-organ analysis of TGF-β-mediated remodelling of the tumour microenvironment by tissue clearing. Commun. Biol. 2021;4:294. doi: 10.1038/s42003-021-01786-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 280.Zhang M., Huang X., Song Y.-X., Gao P., Sun J.-X., Wang Z.-N. High Platelet-to-Lymphocyte Ratio Predicts Poor Prognosis and Clinicopathological Characteristics in Patients with Breast Cancer: A Meta-Analysis. Bio. Med. Res. Int. 2017;2017:9503025. doi: 10.1155/2017/9503025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 281.Cho U., Park H.S., Im S.Y., Yoo C.Y., Jung J.H., Suh Y.J., Choi H.J. Prognostic value of systemic inflammatory markers and development of a nomogram in breast cancer. PLoS ONE. 2018;13:e0200936. doi: 10.1371/journal.pone.0200936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 282.Koh C.-H., Bhoopathy N., Ng K.-L., Jabir R.S., Tan G.-H., See M.H., Jamaris S., Taib N.A. Utility of pre-treatment neutrophil–lymphocyte ratio and platelet–lymphocyte ratio as prognostic factors in breast cancer. Br. J. Cancer. 2015;113:150–158. doi: 10.1038/bjc.2015.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 283.Morrow M., White J., Moughan J., Owen J., Pajack T., Sylvester J., Wilson J.F., Winchester D. Factors Predicting the Use of Breast-Conserving Therapy in Stage I and II Breast Carcinoma. J. Clin. Oncol. 2001;19:2254–2262. doi: 10.1200/JCO.2001.19.8.2254. [DOI] [PubMed] [Google Scholar]
- 284.Rahman G.A. Breast conserving therapy: A surgical technique where little can mean more. J. Surg. Tech. Case Rep. 2011;3:1–4. doi: 10.4103/2006-8808.78459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 285.Cardoso F., Kyriakides S., Ohno S., Penault-Llorca F., Poortmans P., Rubio I., Zackrisson S., Senkus E. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019;30:1194–1220. doi: 10.1093/annonc/mdz173. [DOI] [PubMed] [Google Scholar]
- 286.Rouzier R., Perou C., Symmans W.F., Ibrahim N., Cristofanilli M., Anderson K., Hess K.R., Stec J., Ayers M., Wagner P., et al. Breast Cancer Molecular Subtypes Respond Differently to Preoperative Chemotherapy. Clin. Cancer Res. 2005;11:5678–5685. doi: 10.1158/1078-0432.CCR-04-2421. [DOI] [PubMed] [Google Scholar]
- 287.Fisher B., Bryant J., Wolmark N., Mamounas E., Brown A., Fisher E.R., Wickerham D.L., Begovic M., DeCillis A., Robidoux A., et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J. Clin. Oncol. 1998;16:2672–2685. doi: 10.1200/JCO.1998.16.8.2672. [DOI] [PubMed] [Google Scholar]
- 288.Yang T.J., Ho A.Y. Radiation Therapy in the Management of Breast Cancer. Surg. Clin. N. Am. 2013;93:455–471. doi: 10.1016/j.suc.2013.01.002. [DOI] [PubMed] [Google Scholar]
- 289.Joshi S.C., Khan F.A., Pant I., Shukla A. Role of Radiotherapy in Early Breast Cancer: An Overview. Int. J. Health Sci. 2007;1:259–264. [PMC free article] [PubMed] [Google Scholar]
- 290.Lumachi F., Luisetto G., Basso S.M.M., Basso U., Brunello A., Camozzi V. Endocrine Therapy of Breast Cancer. Curr. Med. Chem. 2011;18:513–522. doi: 10.2174/092986711794480177. [DOI] [PubMed] [Google Scholar]
- 291.Tremont A., Lu J., Cole J.T. Endocrine Therapy for Early Breast Cancer: Updated Review. Ochsner J. 2017;17:405–411. [PMC free article] [PubMed] [Google Scholar]
- 292.Jones K.L., Buzdar A.U. A review of adjuvant hormonal therapy in breast cancer. Endocr.-Related Cancer. 2004;11:391–406. doi: 10.1677/erc.1.00594. [DOI] [PubMed] [Google Scholar]
- 293.Drăgănescu M., Carmocan C. Hormone Therapy in Breast Cancer. Chirurgia. 2017;112:413–417. doi: 10.21614/chirurgia.112.4.413. [DOI] [PubMed] [Google Scholar]
- 294.Abe O., Abe R., Enomoto K., Kikuchi K., Koyama H., Masuda H., Nomura Y., Sakai K., Sugimachi K., Tominaga T., et al. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: An overview of the randomised trials. Lancet. 2005;365:1687–1717. doi: 10.1016/s0140-6736(05)66544-0. [DOI] [PubMed] [Google Scholar]
- 295.Maximiano S., Magalhães P., Guerreiro M.P., Morgado M. Trastuzumab in the Treatment of Breast Cancer. Bio. Drugs. 2016;30:75–86. doi: 10.1007/s40259-016-0162-9. [DOI] [PubMed] [Google Scholar]
- 296.Ishii K., Morii N., Yamashiro H. Pertuzumab in the treatment of HER2-positive breast cancer: An evidence-based review of its safety, efficacy, and place in therapy. Core Évid. 2019;14:51–70. doi: 10.2147/CE.S217848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 297.Nguyen X., Hooper M., Borlagdan J.P., Palumbo A. A Review of Fam-Trastuzumab Deruxtecan-nxki in HER2-Positive Breast Cancer. Ann. Pharmacother. 2021 doi: 10.1177/1060028021998320. [DOI] [PubMed] [Google Scholar]
- 298.Moreira C., Kaklamani V. Lapatinib and breast cancer: Current indications and outlook for the future. Expert Rev. Anticancer. Ther. 2010;10:1171–1182. doi: 10.1586/era.10.113. [DOI] [PubMed] [Google Scholar]
- 299.Park J.W., Liu M.C., Yee D., Yau C., Veer L.J.V., Symmans W.F., Paoloni M., Perlmutter J., Hylton N.M., Hogarth M., et al. Adaptive Randomization of Neratinib in Early Breast Cancer. N. Engl. J. Med. 2016;375:11–22. doi: 10.1056/NEJMoa1513750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 300.Pegram M.D., Reese D.M. Combined biological therapy of breast cancer using monoclonal antibodies directed against HER2/protein and vascular endothelial growth factor. Semin. Oncol. 2002;29:29–37. doi: 10.1053/sonc.2002.34053. [DOI] [PubMed] [Google Scholar]
- 301.Riccardi F., Colantuoni G., Diana A., Mocerino C., Lauria R., Febbraro A., Nuzzo F., Addeo R., Marano O., Incoronato P., et al. Exemestane and Everolimus combination treatment of hormone receptor positive, HER2 negative metastatic breast cancer: A retrospective study of 9 cancer centers in the Campania Region (Southern Italy) focused on activity, efficacy and safety. Mol. Clin. Oncol. 2018;9:255–263. doi: 10.3892/mco.2018.1672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 302.Steger G.G., Gnant M., Bartsch R. Palbociclib for the treatment of postmenopausal breast cancer—An update. Expert Opin. Pharmacother. 2016;17:255–263. doi: 10.1517/14656566.2016.1133590. [DOI] [PubMed] [Google Scholar]
- 303.Shah A., Bloomquist E., Tang S., Fu W., Bi Y., Liu Q., Yu J., Zhao P., Palmby T.R., Goldberg K.B., et al. FDA Approval: Ribociclib for the Treatment of Postmenopausal Women with Hormone Receptor–Positive, HER2-Negative Advanced or Metastatic Breast Cancer. Clin. Cancer Res. 2018;24:2999–3004. doi: 10.1158/1078-0432.CCR-17-2369. [DOI] [PubMed] [Google Scholar]
- 304.Kwapisz D. Cyclin-dependent kinase 4/6 inhibitors in breast cancer: Palbociclib, ribociclib, and abemaciclib. Breast Cancer Res. Treat. 2017;166:41–54. doi: 10.1007/s10549-017-4385-3. [DOI] [PubMed] [Google Scholar]
- 305.Royce M.E., Osman D. Everolimus in the Treatment of Metastatic Breast Cancer. Breast Cancer Basic Clin. Res. 2015;9:73–79. doi: 10.4137/BCBCR.S29268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 306.Heimes A.-S., Schmidt M. Atezolizumab for the treatment of triple-negative breast cancer. Expert Opin. Investig. Drugs. 2018;28:1–5. doi: 10.1080/13543784.2019.1552255. [DOI] [PubMed] [Google Scholar]
- 307.Steger G.G., Bartsch R. Denosumab for the treatment of bone metastases in breast cancer: Evidence and opinion. Ther. Adv. Med. Oncol. 2011;3:233–243. doi: 10.1177/1758834011412656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 308.Tarantino P., Morganti S., Curigliano G. Biologic therapy for advanced breast cancer: Recent advances and future directions. Expert Opin. Biol. Ther. 2020;20:1009–1024. doi: 10.1080/14712598.2020.1752176. [DOI] [PubMed] [Google Scholar]

سرطان پستان – اپیدمیولوژی، عوامل خطر، طبقهبندی، نشانگرهای پیشآگهی و استراتژیهای درمانی فعلی
سرطان پستان شایعترین سرطان در میان زنان است. برآورد میشود که هر ساله حدود ۲٫۳ میلیون مورد جدید سرطان پستان

